
CHAMELEON User’s Guide
Software of MORSE project

A dense linear algebra software for heterogeneous architectures
Version 0.9.1

Inria
University of Tennessee

University of Colorado Denver
King Abdullah University of Science and Technology



Copyright c© 2014 Inria

Copyright c© 2014 The University of Tennessee

Copyright c© 2014 King Abdullah University of Science and Technology

Redistribution and use in source and binary forms, with or without modifica-
tion, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer listed in this license in
the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holders nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall the copyright owner or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages (including,
but not limited to, procurement of substitute goods or services; loss of use,
data, or profits; or business interruption) however caused and on any theory
of liability, whether in contract, strict liability, or tort (including negligence or
otherwise) arising in any way out of the use of this software, even if advised of
the possibility of such damage.



i

Table of Contents

1 Introduction to CHAMELEON . . . . . . . . . . . . . . . . 1
1.1 MORSE project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 MORSE Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Research fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2.1 Fine interaction between linear algebra and runtime
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2.2 Runtime systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2.3 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Research papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 CHAMELEON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 CHAMELEON software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 PLASMA’s design principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2.1 Tile Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2.2 Tile Data Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2.3 Dynamic Task Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Installing CHAMELEON . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Downloading CHAMELEON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Getting Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Required dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2.1 a BLAS implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2.2 CBLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2.3 a LAPACK implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2.4 LAPACKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2.5 libtmg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2.6 QUARK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2.7 StarPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2.8 hwloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2.9 pthread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Optional dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3.1 OpenMPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3.2 Nvidia CUDA Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3.3 MAGMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3.4 FxT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Build process of CHAMELEON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Setting up a build directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Configuring the project with best efforts . . . . . . . . . . . . . . . . . . 10
2.2.3 Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.5 Installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11



ii

3 Configuring CHAMELEON . . . . . . . . . . . . . . . . . . 13
3.1 Compilation configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 General CMake options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 CHAMELEON options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Dependencies detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Use FxT profiling through StarPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Use simulation mode with StarPU-SimGrid . . . . . . . . . . . . . . . . . . . . 17

4 Using CHAMELEON . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 Using CHAMELEON executables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Linking an external application with CHAMELEON libraries . . 21

4.2.1 Static linking in C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Dynamic linking in C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Build a Fortran program with CHAMELEON . . . . . . . . . . . . 22

4.3 CHAMELEON API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.1 Tutorial LAPACK to CHAMELEON . . . . . . . . . . . . . . . . . . . . . 23

4.3.1.1 Step0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.1.2 Step1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1.3 Step2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.1.4 Step3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1.5 Step4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1.6 Step5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1.7 Step6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.2 List of available routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2.1 Auxiliary routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2.2 Descriptor routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2.3 Options routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2.4 Sequences routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2.5 Linear Algebra routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



Chapter 1: Introduction to CHAMELEON 1

1 Introduction to CHAMELEON

1.1 MORSE project

1.1.1 MORSE Objectives

When processor clock speeds flatlined in 2004, after more than fifteen years of exponential
increases, the era of near automatic performance improvements that the HPC application
community had previously enjoyed came to an abrupt end. To develop software that will
perform well on petascale and exascale systems with thousands of nodes and millions of
cores, the list of major challenges that must now be confronted is formidable: 1) dramatic
escalation in the costs of intrasystem communication between processors and/or levels of
memory hierarchy; 2) increased heterogeneity of the processing units (mixing CPUs, GPUs,
etc. in varying and unexpected design combinations); 3) high levels of parallelism and
more complex constraints means that cooperating processes must be dynamically and un-
predictably scheduled for asynchronous execution; 4) software will not run at scale without
much better resilience to faults and far more robustness; and 5) new levels of self-adaptivity
will be required to enable software to modulate process speed in order to satisfy limited
energy budgets. The MORSE associate team will tackle the first three challenges in a or-
chestrating work between research groups respectively specialized in sparse linear algebra,
dense linear algebra and runtime systems. The overall objective is to develop robust lin-
ear algebra libraries relying on innovative runtime systems that can fully benefit from the
potential of those future large-scale complex machines. Challenges 4) and 5) will also be
investigated by the different teams in the context of other partnerships, but they will not
be the main focus of the associate team as they are much more prospective.

1.1.2 Research fields

The overall goal of the MORSE associate team is to enable advanced numerical algorithms
to be executed on a scalable unified runtime system for exploiting the full potential of future
exascale machines. We expect advances in three directions based first on strong and closed
interactions between the runtime and numerical linear algebra communities. This initial
activity will then naturally expand to more focused but still joint research in both fields.

1.1.2.1 Fine interaction between linear algebra and runtime
systems

On parallel machines, HPC applications need to take care of data movement and consistency,
which can be either explicitly managed at the level of the application itself or delegated to
a runtime system. We adopt the latter approach in order to better keep up with hardware
trends whose complexity is growing exponentially. One major task in this project is to define
a proper interface between HPC applications and runtime systems in order to maximize
productivity and expressivity. As mentioned in the next section, a widely used approach
consists in abstracting the application as a DAG that the runtime system is in charge of
scheduling. Scheduling such a DAG over a set of heterogeneous processing units introduces
a lot of new challenges, such as predicting accurately the execution time of each type of
task over each kind of unit, minimizing data transfers between memory banks, performing
data prefetching, etc. Expected advances: In a nutshell, a new runtime system API will be



Chapter 1: Introduction to CHAMELEON 2

designed to allow applications to provide scheduling hints to the runtime system and to get
real-time feedback about the consequences of scheduling decisions.

1.1.2.2 Runtime systems

A runtime environment is an intermediate layer between the system and the application.
It provides low-level functionality not provided by the system (such as scheduling or man-
agement of the heterogeneity) and high-level features (such as performance portability). In
the framework of this proposal, we will work on the scalability of runtime environment.
To achieve scalability it is required to avoid all centralization. Here, the main problem
is the scheduling of the tasks. In many task-based runtime environments the scheduler is
centralized and becomes a bottleneck as soon as too many cores are involved. It is there-
fore required to distribute the scheduling decision or to compute a data distribution that
impose the mapping of task using, for instance the so-called “owner-compute” rule. Ex-
pected advances: We will design runtime systems that enable an efficient and scalable use
of thousands of distributed multicore nodes enhanced with accelerators.

1.1.2.3 Linear algebra

Because of its central position in HPC and of the well understood structure of its algorithms,
dense linear algebra has often pioneered new challenges that HPC had to face. Again, dense
linear algebra has been in the vanguard of the new era of petascale computing with the
design of new algorithms that can efficiently run on a multicore node with GPU accelerators.
These algorithms are called “communication-avoiding” since they have been redesigned to
limit the amount of communication between processing units (and between the different
levels of memory hierarchy). They are expressed through Direct Acyclic Graphs (DAG) of
fine-grained tasks that are dynamically scheduled. Expected advances: First, we plan to
investigate the impact of these principles in the case of sparse applications (whose algorithms
are slightly more complicated but often rely on dense kernels). Furthermore, both in the
dense and sparse cases, the scalability on thousands of nodes is still limited; new numerical
approaches need to be found. We will specifically design sparse hybrid direct/iterative
methods that represent a promising approach.

1.1.3 Research papers

Research papers about MORSE can be found at

http://icl.cs.utk.edu/projectsdev/morse/pubs/index.html

1.2 CHAMELEON

1.2.1 CHAMELEON software

The main purpose is to address the performance shortcomings of the LAPACK and
ScaLAPACK libraries on multicore processors and multi-socket systems of multicore
processors and their inability to efficiently utilize accelerators such as Graphics Processing
Units (GPUs).

CHAMELEON is a framework written in C which provides routines to solve dense gen-
eral systems of linear equations, symmetric positive definite systems of linear equations and
linear least squares problems, using LU, Cholesky, QR and LQ factorizations. Real arith-

http://icl.cs.utk.edu/projectsdev/morse/pubs/index.html
http://www.netlib.org/lapack/
http://www.netlib.org/scalapack/


Chapter 1: Introduction to CHAMELEON 3

metic and complex arithmetic are supported in both single precision and double precision.
It supports Linux and Mac OS/X machines (only tested on Intel x86-64 architecture).

CHAMELEON is based on PLASMA source code but is not limited to shared-memory
environment and can exploit multiple GPUs. CHAMELEON is interfaced in a generic way
with both QUARK and StarPU runtime systems. This feature allows to analyze in a unified
framework how sequential task-based algorithms behave regarding different runtime systems
implementations. Using CHAMELEON with StarPU runtime system allows to exploit
GPUs through kernels provided by cuBLAS and MAGMA and clusters of interconnected
nodes with distributed memory (using MPI). Computation of very large systems with dense
matrices on a cluster of nodes is still being experimented and stabilized. It is not expected
to get stable performances with the current version using MPI.

1.2.2 PLASMA’s design principles

CHAMELEON is originally based on PLASMA so that design principles are very similar.
The content of this section Section 1.2.2 [PLASMA’s design principles], page 3 has been
copied from the ‘Design principles’ section of the PLASMA User’s Guide.

1.2.2.1 Tile Algorithms

Tile algorithms are based on the idea of processing the matrix by square tiles of relatively
small size, such that a tile fits entirely in one of the cache levels associated with one core.
This way a tile can be loaded to the cache and processed completely before being evicted
back to the main memory. Of the three types of cache misses, compulsory, capacity and
conflict, the use of tile algorithms minimizes the number of capacity misses, since each
operation loads the amount of data that does not “overflow” the cache.

For some operations such as matrix multiplication and Cholesky factorization, translat-
ing the classic algorithm to the tile algorithm is trivial. In the case of matrix multiplication,
the tile algorithm is simply a product of applying the technique of loop tiling to the canon-
ical definition of three nested loops. It is very similar for the Cholesky factorization. The
left-looking definition of Cholesky factorization from LAPACK is a loop with a sequence
of calls to four routines: xSYRK (symmetric rank-k update), xPOTRF (Cholesky factor-
ization of a small block on the diagonal), xGEMM (matrix multiplication) and xTRSM
(triangular solve). If the xSYRK, xGEMM and xTRSM operations are expressed with the
canonical definition of three nested loops and the technique of loop tiling is applied, the
tile algorithm results. Since the algorithm is produced by simple reordering of operations,
neither the number of operations nor numerical stability of the algorithm are affected.

The situation becomes slightly more complicated for LU and QR factorizations, where
the classic algorithms factorize an entire panel of the matrix (a block of columns) at every
step of the algorithm. One can observe, however, that the process of matrix factorization is
synonymous with introducing zeros in approproate places and a tile algorithm can be fought
of as one that zeroes one tile of the matrix at a time. This process is referred to as updating
of a factorization or incremental factorization. The process is equivalent to factorizing the
top tile of a panel, then placing the upper triangle of the result on top of the tile blow
and factorizing again, then moving to the next tile and so on. Here, the tile LU and QR
algorithms perform slightly more floating point operations and require slightly more memory
for auxiliary data. Also, the tile LU factorization applies a different pivoting pattern and, as
a result, is less numerically stable than classic LU with full pivoting. Numerical stability is

http://icl.cs.utk.edu/plasma/
http://icl.cs.utk.edu/quark/
http://runtime.bordeaux.inria.fr/StarPU/
http://runtime.bordeaux.inria.fr/StarPU/
https://developer.nvidia.com/cublas
http://icl.cs.utk.edu/magma/
http://www.open-mpi.org/
http://icl.cs.utk.edu/plasma/


Chapter 1: Introduction to CHAMELEON 4

not an issue in case of the tile QR, which relies on orthogonal transformations (Householder
reflections), which are numerically stable.

DGETRF

DTSTRF

DGESSM

DSSSSM

DGESSM

DTSTRF

DSSSSM

DSSSSM DSSSSM

U
L1

L2

U

C1

C1

C2

L1

L2
L1'L1'

P2 P2

P1P1

Schematic illustration of the tile LU factorization (kernel names for real arithmetics in
double precision), courtesey of the PLASMA team.

1.2.2.2 Tile Data Layout

Tile layout is based on the idea of storing the matrix by square tiles of relatively small size,
such that each tile occupies a continuous memory region. This way a tile can be loaded to
the cache memory efficiently and the risk of evicting it from the cache memory before it is
completely processed is minimized. Of the three types of cache misses, compulsory, capacity
and conflict, the use of tile layout minimizes the number of conflict misses, since a continuous
region of memory will completely fill out a set-associative cache memory before an eviction
can happen. Also, from the standpoint of multithreaded execution, the probability of false
sharing is minimized. It can only affect the cache lines containing the beginning and the
ending of a tile.

In standard cache-based architecture, tiles continously laid out in memory maximize
the profit from automatic prefetching. Tile layout is also beneficial in situations involving
the use of accelerators, where explicit communication of tiles through DMA transfers is
required, such as moving tiles between the system memory and the local store in Cell
B. E. or moving tiles between the host memory and the device memory in GPUs. In most
circumstances tile layout also minimizes the number of TLB misses and conflicts to memory
banks or partitions. With the standard (column-major) layout, access to each column of
a tile is much more likely to cause a conflict miss, a false sharing miss, a TLB miss or a
bank or partition conflict. The use of the standard layout for dense matrix operations is a
performance minefield. Although occasionally one can pass through it unscathed, the risk
of hitting a spot deadly to performance is very high.

Another property of the layout utilized in PLASMA is that it is “flat”, meaning that
it does not involve a level of indirection. Each tile stores a small square submatrix of
the main matrix in a column-major layout. In turn, the main matrix is an arrangement
of tiles immediately following one another in a column-major layout. The offset of each

http://icl.cs.utk.edu/plasma/


Chapter 1: Introduction to CHAMELEON 5

tile can be calculated through address arithmetics and does not involve pointer indirection.
Alternatively, a matrix could be represented as an array of pointers to tiles, located anywhere
in memory. Such layout would be a radical and unjustifiable departure from LAPACK and
ScaLAPACK. Flat tile layout is a natural progression from LAPACK’s column-major layout
and ScaLAPACK’s block-cyclic layout.

Another related property of PLASMA’s tile layout is that it includes provisions for
padding of tiles, i.e., the actual region of memory designated for a tile can be larger than
the memory occupied by the actual data. This allows to force a certain alignment of tile
boundaries, while using the flat organization described in the previous paragraph. The
motivation is that, at the price of small memory overhead, alignment of tile boundaries
may prove benefivial in multiple scenarios involving memory systems of standard multicore
processors, as well as accelerators. The issues that come into play are, again, the use of
TLBs and memory banks or partitions.

Schematic illustration of the tile layout with column-major order of tiles, column-major
order of elements within tiles and (optional) padding for enforcing a certain alighment of
tile bondaries, courtesey of the PLASMA team.

1.2.2.3 Dynamic Task Scheduling

Dynamic scheduling is the idea of assigning work to cores based on the availability of data
for processing at any given point in time and is also referred to as data-driven scheduling.
The concept is related closely to the idea of expressing computation through a task graph,
often referred to as the DAG (Direct Acyclic Graph), and the flexibility exploring the
DAG at runtime. Thus, to a large extent, dynamic scheduling is synonymous with runtime
scheduling . An important concept here is the one of the critical path, which defines the upper
bound on the achievable parallelism, and needs to be pursued at the maximum speed. This
is in direct opposition to the fork-and-join or data-parallel programming models, where
artificial synchronization points expose serial sections of the code, where multiple cores are
idle, while sequential processing takes place. The use of dynamic scheduling introduces a
trade-off, though. The more dynamic (flexible) scheduling is, the more centralized (and
less scalable) the scheduling mechanism is. For that reason, currently PLASMA uses two

http://icl.cs.utk.edu/plasma/


Chapter 1: Introduction to CHAMELEON 6

scheduling mechanisms, one which is fully dynamic and one where work is assigned statically
and dependency checks are done at runtime.

The first scheduling mechanism relies on unfolding a sliding window of the task graph at
runtime and scheduling work by resolving data hazards: Read After Write~(RAW), Write
After Read~(WAR) and Write After Write~(WAW), a technique analogous to instruction
scheduling in superscalar processors. It also relies on work-stealing for balanding the load
among all multiple cores. The second scheduling mechanism relies on statically designating
a path through the execution space of the algorithm to each core and following a cycle:
transition to a task, wait for its dependencies, execute it, update the overall progress. Task
are identified by tuples and task transitions are done through locally evaluated formulas.
Progress information can be centralized, replicated or distributed (currently centralized).

SGEQRT STSQRT SLARFB SSSRFB

A trace of the tile QR factorization executing on eight cores without any global syn-
chronization points (kernel names for real arithmetics in single precision), courtesey of the
PLASMA team.

http://icl.cs.utk.edu/plasma/


Chapter 2: Installing CHAMELEON 7

2 Installing CHAMELEON

CHAMELEON can be built and installed by the standard means of CMake (http://www.
cmake.org/). General information about CMake, as well as installation binaries and CMake
source code are available from http://www.cmake.org/cmake/resources/software.html.
The following chapter is intended to briefly remind how these tools can be used to install
CHAMELEON.

2.1 Downloading CHAMELEON

2.1.1 Getting Sources

The latest official release tarballs of CHAMELEON sources are available for download from
chameleon-0.9.1.

2.1.2 Required dependencies

2.1.2.1 a BLAS implementation

BLAS (Basic Linear Algebra Subprograms), are a de facto standard for basic linear algebra
operations such as vector and matrix multiplication. FORTRAN implementation of BLAS
is available from Netlib. Also, C implementation of BLAS is included in GSL (GNU Sci-
entific Library). Both these implementations are reference implementation of BLAS, are
not optimized for modern processor architectures and provide an order of magnitude lower
performance than optimized implementations. Highly optimized implementations of BLAS
are available from many hardware vendors, such as Intel MKL and AMD ACML. Fast im-
plementations are also available as academic packages, such as ATLAS and Goto BLAS.
The standard interface to BLAS is the FORTRAN interface.

Caution about the compatibility: CHAMELEON has been mainly tested with the ref-
erence BLAS from NETLIB and the Intel MKL 11.1 from Intel distribution 2013 sp1.

2.1.2.2 CBLAS

CBLAS is a C language interface to BLAS. Most commercial and academic implementations
of BLAS also provide CBLAS. Netlib provides a reference implementation of CBLAS on
top of FORTRAN BLAS (Netlib CBLAS). Since GSL is implemented in C, it naturally
provides CBLAS.

Caution about the compatibility: CHAMELEON has been mainly tested with the ref-
erence CBLAS from NETLIB and the Intel MKL 11.1 from Intel distribution 2013 sp1.

2.1.2.3 a LAPACK implementation

LAPACK (Linear Algebra PACKage) is a software library for numerical linear algebra, a
successor of LINPACK and EISPACK and a predecessor of CHAMELEON. LAPACK pro-
vides routines for solving linear systems of equations, linear least square problems, eigen-
value problems and singular value problems. Most commercial and academic BLAS packages
also provide some LAPACK routines.

Caution about the compatibility: CHAMELEON has been mainly tested with the ref-
erence LAPACK from NETLIB and the Intel MKL 11.1 from Intel distribution 2013 sp1.

http://www.cmake.org/
http://www.cmake.org/
http://www.cmake.org/cmake/resources/software.html
http://morse.gforge.inria.fr/chameleon-0.9.1.tar.gz
http://www.netlib.org/blas/
http://www.netlib.org/blas/#_cblas
http://www.netlib.org/lapack/


Chapter 2: Installing CHAMELEON 8

2.1.2.4 LAPACKE

LAPACKE is a C language interface to LAPACK (or CLAPACK). It is produced by Intel
in coordination with the LAPACK team and is available in source code from Netlib in its
original version (Netlib LAPACKE) and from CHAMELEON website in an extended version
(LAPACKE for CHAMELEON). In addition to implementing the C interface, LAPACKE
also provides routines which automatically handle workspace allocation, making the use of
LAPACK much more convenient.

Caution about the compatibility: CHAMELEON has been mainly tested with the ref-
erence LAPACKE from NETLIB. A stand-alone version of LAPACKE is required.

2.1.2.5 libtmg

libtmg is a component of the LAPACK library, containing routines for generation of input
matrices for testing and timing of LAPACK. The testing and timing suites of LAPACK
require libtmg, but not the library itself. Note that the LAPACK library can be built and
used without libtmg.

Caution about the compatibility: CHAMELEON has been mainly tested with the ref-
erence TMG from NETLIB and the Intel MKL 11.1 from Intel distribution 2013 sp1.

2.1.2.6 QUARK

QUARK (QUeuing And Runtime for Kernels) provides a library that enables the dynamic
execution of tasks with data dependencies in a multi-core, multi-socket, shared-memory
environment. One of QUARK or StarPU Runtime systems has to be enabled in order to
schedule tasks on the architecture. If QUARK is enabled then StarPU is disabled and con-
versely. Note StarPU is enabled by default. When CHAMELEON is linked with QUARK,
it is not possible to exploit neither CUDA (for GPUs) nor MPI (distributed-memory envi-
ronment). You can use StarPU to do so.

Caution about the compatibility: CHAMELEON has been mainly tested with the
QUARK library from PLASMA release between versions 2.5.0 and 2.6.0.

2.1.2.7 StarPU

StarPU is a task programming library for hybrid architectures. StarPU handles run-time
concerns such as:

• Task dependencies

• Optimized heterogeneous scheduling

• Optimized data transfers and replication between main memory and discrete memories

• Optimized cluster communications

StarPU can be used to benefit from GPUs and distributed-memory environment. One
of QUARK or StarPU runtime system has to be enabled in order to schedule tasks on the
architecture. If StarPU is enabled then QUARK is disabled and conversely. Note StarPU
is enabled by default.

Caution about the compatibility: CHAMELEON has been mainly tested with StarPU-
1.1 releases.

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://icl.cs.utk.edu/quark/
http://runtime.bordeaux.inria.fr/StarPU/


Chapter 2: Installing CHAMELEON 9

2.1.2.8 hwloc

hwloc (Portable Hardware Locality) is a software package for accessing the topology of a
multicore system including components like: cores, sockets, caches and NUMA nodes. It
allows to increase performance, and to perform some topology aware scheduling. hwloc is
available in major distributions and for most OSes and can be downloaded from http://

www.open-mpi.org/software/hwloc.

Caution about the compatibility: hwloc should be compatible with the version of StarPU
used.

2.1.2.9 pthread

POSIX threads library is required to run CHAMELEON on Unix-like systems. It is a
standard component of any such system.

2.1.3 Optional dependencies

2.1.3.1 OpenMPI

OpenMPI is an open source Message Passing Interface implementation for execution on
multiple nodes with distributed-memory environment. MPI can be enabled only if the
runtime system chosen is StarPU (default). To use MPI through StarPU, it is necessary to
compile StarPU with MPI enabled.

Caution about the compatibility: CHAMELEON has been mainly tested with OpenMPI
releases from versions 1.4 to 1.6.

2.1.3.2 Nvidia CUDA Toolkit

Nvidia CUDA Toolkit provides a comprehensive development environment for C and C++
developers building GPU-accelerated applications. CHAMELEON can use a set of low
level optimized kernels coming from cuBLAS to accelerate computations on GPUs. The
cuBLAS library is an implementation of BLAS (Basic Linear Algebra Subprograms) on top
of the Nvidia CUDA runtime. cuBLAS is normaly distributed with Nvidia CUDA Toolkit.
CUDA/cuBLAS can be enabled in CHAMELEON only if the runtime system chosen is
StarPU (default). To use CUDA through StarPU, it is necessary to compile StarPU with
CUDA enabled.

Caution about the compatibility: CHAMELEON has been mainly tested with CUDA
releases from versions 4 to 6. MAGMA library must be compatible with CUDA.

2.1.3.3 MAGMA

MAGMA project aims to develop a dense linear algebra library similar to LAPACK but
for heterogeneous/hybrid architectures, starting with current "Multicore+GPU" systems.
CHAMELEON can use a set of high level MAGMA routines to accelerate computations
on GPUs. To fully benefit from GPUs, the user should enable MAGMA in addition to
CUDA/cuBLAS.

Caution about the compatibility: CHAMELEON has been mainly tested with MAGMA
releases from versions 1.4 to 1.6. MAGMA library must be compatible with CUDA.
MAGMA library should be built with sequential versions of BLAS/LAPACK. We should
not get some MAGMA link flags embarking multithreaded BLAS/LAPACK because it

http://www.open-mpi.org/projects/hwloc/
http://www.open-mpi.org/software/hwloc
http://www.open-mpi.org/software/hwloc
http://www.open-mpi.org/
https://developer.nvidia.com/cuda-toolkit
http://docs.nvidia.com/cuda/cublas/
http://icl.cs.utk.edu/magma/


Chapter 2: Installing CHAMELEON 10

could affect permformances (take care about the MAGMA link flag -lmkl_intel_thread

for example that we could heritate from the pkg-config file magma.pc).

2.1.3.4 FxT

FxT stands for both FKT (Fast Kernel Tracing) and FUT (Fast User Tracing). This library
provides efficient support for recording traces. CHAMELEON can trace kernels execution
on the different workers and produce .paje files if FxT is enabled. FxT can only be used
through StarPU and StarPU must be compiled with FxT enabled, see how to use this
feature here Section 3.3 [Use FxT profiling through StarPU], page 17.

Caution about the compatibility: FxT should be compatible with the version of StarPU
used.

2.2 Build process of CHAMELEON

2.2.1 Setting up a build directory

The CHAMELEON build process requires CMake version 2.8.0 or higher and working C
and Fortran compilers. Compilation and link with CHAMELEON libraries have been tested
with gcc/gfortran 4.8.1 and icc/ifort 14.0.2. On Unix-like operating systems, it also requires
Make. The CHAMELEON project can not be configured for an in-source build. You will
get an error message if you try to compile in-source. Please clean the root of your project
by deleting the generated CMakeCache.txt file (and other CMake generated files).

mkdir build

cd build

You can create a build directory from any location you would like. It can be a
sub-directory of the CHAMELEON base source directory or anywhere else.

2.2.2 Configuring the project with best efforts

cmake <path to SOURCE_DIR> -DOPTION1= -DOPTION2= ...

<path to SOURCE_DIR> represents the root of CHAMELEON project where stands the
main (parent) CMakeLists.txt file. Details about options that are useful to give to cmake

<path to SOURCE_DIR> are given in Section 3.1 [Compilation configuration], page 13.

2.2.3 Building

make [-j[ncores]]

do not hesitate to use -j[ncores] option to speedup the compilation

2.2.4 Tests

In order to make sure that CHAMELEON is working properly on the system, it is also
possible to run a test suite.

make check

or

ctest

http://download.savannah.gnu.org/releases/fkt/


Chapter 2: Installing CHAMELEON 11

2.2.5 Installing

In order to install CHAMELEON at the location that was specified during configuration:

make install

do not forget to specify the install directory with -DCMAKE_INSTALL_PREFIX at cmake
configure

cmake <path to SOURCE_DIR> -DCMAKE_INSTALL_PREFIX=<path to INSTALL_DIR>

Note that the install process is optional. You are free to use CHAMELEON binaries
compiled in the build directory.





Chapter 3: Configuring CHAMELEON 13

3 Configuring CHAMELEON

3.1 Compilation configuration

The following arguments can be given to the cmake <path to source directory> script.

In this chapter, the following convention is used:

• path is a path in your filesystem,

• var is a string and the correct value or an example will be given,

• trigger is an CMake option and the correct value is ON or OFF.

Using CMake there are several ways to give options:

1. directly as CMake command line arguments

2. invoque cmake <path to source directory> once and then use ccmake <path

to source directory> to edit options through a minimalist gui (required
‘cmake-curses-gui’ installed on a Linux system)

3. invoque cmake-gui command and fill information about the location of the sources and
where to build the project, then you have access to options through a user-friendly Qt
interface (required ‘cmake-qt-gui’ installed on a Linux system)

Example of configuration using the command line

cmake ~/chameleon/ -DCMAKE_BUILD_TYPE=Debug \

-DCMAKE_INSTALL_PREFIX=~/install \

-DCHAMELEON_USE_CUDA=ON \

-DCHAMELEON_USE_MAGMA=ON \

-DCHAMELEON_USE_MPI=ON \

-DBLA_VENDOR=Intel10_64lp \

-DSTARPU_DIR=~/install/starpu-1.1 \

-DCHAMELEON_USE_FXT=ON

You can get the full list of options with -L[A][H] options of cmake command:

cmake -LH <path to source directory>

3.1.1 General CMake options

-DCMAKE_INSTALL_PREFIX=path (default:path=/usr/local)

Install directory used by make install where some headers and libraries will
be copied. Permissions have to be granted to write onto path during make

install step.

-DCMAKE_BUILD_TYPE=var (default: Release)

Define the build type and the compiler optimization level. The possible values
for var are:

empty

Debug

Release



Chapter 3: Configuring CHAMELEON 14

RelWithDebInfo

MinSizeRel

-DBUILD_SHARED_LIBS=trigger (default:OFF)

Indicate wether or not CMake has to build CHAMELEON static (OFF) or shared
(ON) libraries.

3.1.2 CHAMELEON options

List of CHAMELEON options that can be enabled/disabled (value=ON or OFF):

-DCHAMELEON_SCHED_STARPU=trigger (default: ON)

to link with StarPU library (runtime system)

-DCHAMELEON_SCHED_QUARK=trigger (default: OFF)

to link with QUARK library (runtime system)

-DCHAMELEON_USE_CUDA=trigger (default: OFF)

to link with CUDA runtime (implementation paradigm for accelerated codes
on GPUs) and cuBLAS library (optimized BLAS kernels on GPUs), can only
be used with StarPU

-DCHAMELEON_USE_MAGMA=trigger (default: OFF)

to link with MAGMA library (kernels on GPUs, higher level than cuBLAS),
can only be used with StarPU

-DCHAMELEON_USE_MPI=trigger (default: OFF)

to link with MPI library (message passing implementation for use of multiple
nodes with distributed memory), can only be used with StarPU

-DCHAMELEON_USE_FXT=trigger (default: OFF)

to link with FxT library (trace execution of kernels on workers), can only be
used with StarPU

-DCHAMELEON_SIMULATION=trigger (default: OFF)

to enable simulation mode, means CHAMELEON will not really execute tasks,
see details in section Section 3.4 [Use simulation mode with StarPU-SimGrid],
page 17. This option must be used with StarPU compiled with SimGrid allowing
to guess the execution time on any architecture. This feature should be used to
make experiments on the scheduler behaviors and performances not to produce
solutions of linear systems.

-DCHAMELEON_ENABLE_DOCS=trigger (default: ON)

to control build of the documentation contained in docs/ sub-directory

-DCHAMELEON_ENABLE_EXAMPLE=trigger (default: ON)

to control build of the examples executables (API usage) contained in example/

sub-directory

-DCHAMELEON_ENABLE_TESTING=trigger (default: ON)

to control build of testing executables (numerical check) contained in testing/

sub-directory

-DCHAMELEON_ENABLE_TIMING=trigger (default: ON)

to control build of timing executables (performances check) contained in
timing/ sub-directory

http://simgrid.gforge.inria.fr/


Chapter 3: Configuring CHAMELEON 15

-DCHAMELEON_PREC_S=trigger (default: ON)

to enable the support of simple arithmetic precision (float in C)

-DCHAMELEON_PREC_D=trigger (default: ON)

to enable the support of double arithmetic precision (double in C)

-DCHAMELEON_PREC_C=trigger (default: ON)

to enable the support of complex arithmetic precision (complex in C)

-DCHAMELEON_PREC_Z=trigger (default: ON)

to enable the support of double complex arithmetic precision (double complex
in C)

-DBLAS_VERBOSE=trigger (default: OFF)

to make BLAS library discovery verbose

-DLAPACK_VERBOSE=trigger (default: OFF)

to make LAPACK library discovery verbose (automatically enabled if BLAS_
VERBOSE=ON)

List of CHAMELEON options that needs a specific value:

-DBLA_VENDOR=var (default: empty)

The possible values for var are:

empty

all

Intel10_64lp

Intel10_64lp_seq

ACML

Apple

Generic

...

to force CMake to find a specific BLAS library, see the full list of
BLA VENDOR in FindBLAS.cmake in cmake_modules/morse/find. By
default BLA_VENDOR is empty so that CMake tries to detect all possible BLAS
vendor with a preference for Intel MKL.

List of CHAMELEON options which requires to give a path:

-DLIBNAME_DIR=path (default: empty)

root directory of the LIBNAME library installation

-DLIBNAME_INCDIR=path (default: empty)

directory of the LIBNAME library headers installation

-DLIBNAME_LIBDIR=path (default: empty)

directory of the LIBNAME libraries (.so, .a, .dylib, etc) installation

LIBNAME can be one of the following: BLAS - CBLAS - FXT - HWLOC - LAPACK
- LAPACKE - MAGMA - QUARK - STARPU - TMG. See paragraph about Section 3.2
[Dependencies detection], page 16 for details.



Chapter 3: Configuring CHAMELEON 16

Libraries detected with an official CMake module (see module files in CMAKE_

ROOT/Modules/):

• CUDA

• MPI

• Threads

Libraries detected with CHAMELEON cmake modules (see module files in cmake_

modules/morse/find/ directory of CHAMELEON sources):

• BLAS

• CBLAS

• FXT

• HWLOC

• LAPACK

• LAPACKE

• MAGMA

• QUARK

• STARPU

• TMG

3.2 Dependencies detection

You have different choices to detect dependencies on your system, either by setting some
environment variables containing paths to the libs and headers or by specifying them directly
at cmake configure. Different cases :

1. detection of dependencies through environment variables:

• LD_LIBRARY_PATH environment variable should contain the list of paths where to
find the libraries:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:path/to/your/libs

• INCLUDE environment variable should contain the list of paths where to find the
header files of libraries

export INCLUDE=$INCLUDE:path/to/your/headers

2. detection with user’s given paths:

• you can specify the path at cmake configure by invoking

cmake <path to SOURCE_DIR> -DLIBNAME_DIR=path/to/your/lib

where LIB stands for the name of the lib to look for, example

cmake <path to SOURCE_DIR> -DSTARPU_DIR=path/to/starpudir \

-DCBLAS_DIR= ...

• it is also possible to specify headers and library directories separately, example



Chapter 3: Configuring CHAMELEON 17

cmake <path to SOURCE_DIR> \

-DSTARPU_INCDIR=path/to/libstarpu/include/starpu/1.1 \

-DSTARPU_LIBDIR=path/to/libstarpu/lib

• Note BLAS and LAPACK detection can be tedious so that we provide a verbose
mode. Use -DBLAS_VERBOSE=ON or -DLAPACK_VERBOSE=ON to enable it.

3.3 Use FxT profiling through StarPU

StarPU can generate its own trace log files by compiling it with the --with-fxt option at
the configure step (you can have to specify the directory where you installed FxT by giving
--with-fxt=... instead of --with-fxt alone). By doing so, traces are generated after
each execution of a program which uses StarPU in the directory pointed by the STARPU_

FXT_PREFIX environment variable. Example:

export STARPU_FXT_PREFIX=/home/yourname/fxt_files/

When executing a ./timing/... CHAMELEON program, if it has been enabled
(StarPU compiled with FxT and -DCHAMELEON_USE_FXT=ON), you can give the option
--trace to tell the program to generate trace log files.

Finally, to generate the trace file which can be opened with Vite program, you
have to use the starpu_fxt_tool executable of StarPU. This tool should be in
path/to/your/install/starpu/bin. You can use it to generate the trace file like this:

• path/to/your/install/starpu/bin/starpu_fxt_tool -i prof_filename

There is one file per mpi processus (prof filename 0, prof filename 1 ...). To generate
a trace of mpi programs you can call it like this:

• path/to/your/install/starpu/bin/starpu_fxt_tool -i prof_filename*

The trace file will be named paje.trace (use -o option to specify an output name).

3.4 Use simulation mode with StarPU-SimGrid

Simulation mode can be enabled by setting the cmake option -DCHAMELEON_SIMULATION=ON.
This mode allows you to simulate execution of algorithms with StarPU compiled with
SimGrid. To do so, we provide some perfmodels in the simucore/perfmodels/ directory
of CHAMELEON sources. To use these perfmodels, please set the following

• STARPU_HOME environment variable to:

<path to SOURCE_DIR>/simucore/perfmodels

• STARPU_HOSTNAME environment variable to the name of the machine to simulate. For
example, on our platform (PlaFRIM) with GPUs at Inria Bordeaux

STARPU_HOSTNAME=mirage

Note that only POTRF kernels with block sizes of 320 or 960 (simple and double
precision) on mirage machine are available for now. Database of models is subject to
change, it should be enrich in a near future.

http://vite.gforge.inria.fr/
http://simgrid.gforge.inria.fr/




Chapter 4: Using CHAMELEON 19

4 Using CHAMELEON

4.1 Using CHAMELEON executables

CHAMELEON provides several test executables that are compiled and link with
CHAMELEON stack of dependencies. Instructions about the arguments to give to
executables are accessible thanks to the option -[-]help or -[-]h. This set of binaries
are separated into three categories and can be found in three different directories:

• example

contains examples of API usage and more specifically the sub-directory la-
pack to morse/ provides a tutorial that explain how to use CHAMELEON
functionalities starting from a full LAPACK code, see Section 4.3.1 [Tutorial LAPACK
to CHAMELEON], page 23

• testing

contains testing drivers to check numerical correctness of CHAMELEON linear algebra
routines with a wide range of parameters

./testing/stesting 4 1 LANGE 600 100 700

Two first arguments are the number of cores and gpus to use. The third one is the
name of the algorithm to test. The other arguments depend on the algorithm, here it
lies for the number of rows, columns and leading dimension of the problem.

Name of algorithms available for testing are:

• LANGE: norms of matrices Infinite, One, Max, Frobenius

• GEMM: general matrix-matrix multiply

• HEMM: hermitian matrix-matrix multiply

• HERK: hermitian matrix-matrix rank k update

• HER2K: hermitian matrix-matrix rank 2k update

• SYMM: symmetric matrix-matrix multiply

• SYRK: symmetric matrix-matrix rank k update

• SYR2K: symmetric matrix-matrix rank 2k update

• PEMV: matrix-vector multiply with pentadiagonal matrix

• TRMM: triangular matrix-matrix multiply

• TRSM: triangular solve, multiple rhs

• POSV: solve linear systems with symmetric positive-definite matrix

• GESV INCPIV: solve linear systems with general matrix

• GELS: linear least squares with general matrix

• timing

contains timing drivers to assess performances of CHAMELEON routines. There are
two sets of executables, those who do not use the tile interface and those who do
(with tile in the name of the executable). Executables without tile interface allocates
data following LAPACK conventions and these data can be given as arguments to



Chapter 4: Using CHAMELEON 20

CHAMELEON routines as you would do with LAPACK. Executables with tile interface
generate directly the data in the format CHAMELEON tile algorithms used to submit
tasks to the runtime system. Executables with tile interface should be more performant
because no data copy from LAPACK matrix layout to tile matrix layout are necessary.
Calling example:

./timing/time_dpotrf --n_range=1000:10000:1000 --nb=320

--threads=9 --gpus=3

--nowarmup

List of main options that can be used in timing:

• --help: show usage

• --threads: Number of CPU workers (default: _SC_NPROCESSORS_ONLN)

• --gpus: number of GPU workers (default: 0)

• --n_range=R: range of N values, with R=Start:Stop:Step (default:
500:5000:500)

• --m=X: dimension (M) of the matrices (default: N)

• --k=X: dimension (K) of the matrices (default: 1), useful for GEMM algorithm
(k is the shared dimension and must be defined >1 to consider matrices and not
vectors)

• --nrhs=X: number of right-hand size (default: 1)

• --nb=X: block/tile size. (default: 128)

• --ib=X: inner-blocking/IB size. (default: 32)

• --niter=X: number of iterations performed for each test (default: 1)

• --rhblk=X: if X > 0, enable Householder mode for QR and LQ factorization. X is
the size of each subdomain (default: 0)

• --[no]check: check result (default: nocheck)

• --[no]profile: print profiling informations (default: noprofile)

• --[no]trace: enable/disable trace generation (default: notrace)

• --[no]dag: enable/disable DAG generation (default: nodag)

• --[no]inv: check on inverse (default: noinv)

• --nocpu: all GPU kernels are exclusively executed on GPUs (default: 0)

List of timing algorithms available:

• LANGE: norms of matrices

• GEMM: general matrix-matrix multiply

• TRSM: triangular solve

• POTRF: Cholesky factorization with a symmetric positive-definite matrix

• POSV: solve linear systems with symmetric positive-definite matrix

• GETRF NOPIV: LU factorization of a general matrix using the tile LU algorithm
without row pivoting

• GESV NOPIV: solve linear system for a general matrix using the tile LU algorithm
without row pivoting



Chapter 4: Using CHAMELEON 21

• GETRF INCPIV: LU factorization of a general matrix using the tile LU algorithm
with partial tile pivoting with row interchanges

• GESV INCPIV: solve linear system for a general matrix using the tile LU algo-
rithm with partial tile pivoting with row interchanges matrix

• GEQRF: QR factorization of a general matrix

• GELS: solves overdetermined or underdetermined linear systems involving a gen-
eral matrix using the QR or the LQ factorization

4.2 Linking an external application with CHAMELEON
libraries

Compilation and link with CHAMELEON libraries have been tested with gcc/gfortran 4.8.1
and icc/ifort 14.0.2.

4.2.1 Static linking in C

Lets imagine you have a file main.c that you want to link with CHAMELEON static
libraries. Lets consider /home/yourname/install/chameleon is the install directory of
CHAMELEON containing sub-directories include/ and lib/. Here could be your compi-
lation command with gcc compiler:

gcc -I/home/yourname/install/chameleon/include -o main.o -c main.c

Now if you want to link your application with CHAMELEON static libraries, you could
do:

gcc main.o -o main \

/home/yourname/install/chameleon/lib/libchameleon.a \

/home/yourname/install/chameleon/lib/libchameleon_starpu.a \

/home/yourname/install/chameleon/lib/libcoreblas.a \

-lstarpu-1.1 -Wl,--no-as-needed -lmkl_intel_lp64 \

-lmkl_sequential -lmkl_core -lpthread -lm -lrt

As you can see in this example, we also link with some dynamic libraries starpu-1.1,
Intel MKL libraries (for BLAS/LAPACK/CBLAS/LAPACKE), pthread, m (math) and rt.
These libraries will depend on the configuration of your CHAMELEON build. You can find
these dependencies in .pc files we generate during compilation and that are installed in the
sub-directory lib/pkgconfig of your CHAMELEON install directory. Note also that you
could need to specify where to find these libraries with -L option of your compiler/linker.

Before to run your program, make sure that all shared libraries paths your executable
depends on are known. Enter ldd main to check. If some shared libraries paths are missing
append them in the LD_LIBRARY_PATH (for Linux systems) environment variable (DYLD_
LIBRARY_PATH on Mac, LIB on Windows).

4.2.2 Dynamic linking in C

For dynamic linking (need to build CHAMELEON with CMake option BUILD_SHARED_

LIBS=ON) it is similar to static compilation/link but instead of specifying path to your
static libraries you indicate the path to dynamic libraries with -L option and you give the
name of libraries with -l option like this:

gcc main.o -o main \



Chapter 4: Using CHAMELEON 22

-L/home/yourname/install/chameleon/lib \

-lchameleon -lchameleon_starpu -lcoreblas \

-lstarpu-1.1 -Wl,--no-as-needed -lmkl_intel_lp64 \

-lmkl_sequential -lmkl_core -lpthread -lm -lrt

Note that an update of your environment variable LD_LIBRARY_PATH (DYLD_LIBRARY_
PATH on Mac, LIB on Windows) with the path of the libraries could be required before
executing, example:

export LD_LIBRARY_PATH=path/to/libs:path/to/chameleon/lib

4.2.3 Build a Fortran program with CHAMELEON

CHAMELEON provides a Fortran interface to user functions. Example:

call morse_version(major, minor, patch) !or

call MORSE_VERSION(major, minor, patch)

Build and link are very similar to the C case.

Compilation example:

gfortran -o main.o -c main.c

Static linking example:

gfortran main.o -o main \

/home/yourname/install/chameleon/lib/libchameleon.a \

/home/yourname/install/chameleon/lib/libchameleon_starpu.a \

/home/yourname/install/chameleon/lib/libcoreblas.a \

-lstarpu-1.1 -Wl,--no-as-needed -lmkl_intel_lp64 \

-lmkl_sequential -lmkl_core -lpthread -lm -lrt

Dynamic linking example:

gfortran main.o -o main \

-L/home/yourname/install/chameleon/lib \

-lchameleon -lchameleon_starpu -lcoreblas \

-lstarpu-1.1 -Wl,--no-as-needed -lmkl_intel_lp64 \

-lmkl_sequential -lmkl_core -lpthread -lm -lrt

4.3 CHAMELEON API

CHAMELEON provides routines to solve dense general systems of linear equations, sym-
metric positive definite systems of linear equations and linear least squares problems, using
LU, Cholesky, QR and LQ factorizations. Real arithmetic and complex arithmetic are sup-
ported in both single precision and double precision. Routines that compute linear algebra
are of the folowing form:

MORSE_name[_Tile[_Async]]

• all user routines are prefixed with MORSE

• name follows BLAS/LAPACK naming scheme for algorithms (e.g. sgemm for general
matrix-matrix multiply simple precision)

• CHAMELEON provides three interface levels



Chapter 4: Using CHAMELEON 23

− MORSE_name: simplest interface, very close to CBLAS and LAPACKE, matrices
are given following the LAPACK data layout (1-D array column-major). It in-
volves copy of data from LAPACK layout to tile layout and conversely (to update
LAPACK data), see Section 4.3.1.2 [Step1], page 24.

− MORSE_name_Tile: the tile interface avoid copies between LAPACK and tile lay-
outs. It is the standard interface of CHAMELEON and it should achieved better
performance than the previous simplest interface. The data are given through a
specific structure called a descriptor, see Section 4.3.1.3 [Step2], page 25.

− MORSE_name_Tile_Async: similar to the tile interface, it avoids synchonization
barrier normally called between Tile routines. At the end of an Async function,
completion of tasks is not guarentee and data are not necessarily up-to-date. To
ensure that tasks have been all executed a synchronization function has to be called
after the sequence of Async functions, see Section 4.3.1.5 [Step4], page 27.

MORSE routine calls have to be precede from

MORSE_Init( NCPU, NGPU );

to initialize MORSE and the runtime system and followed by

MORSE_Finalize();

to free some data and finalize the runtime and/or MPI.

4.3.1 Tutorial LAPACK to CHAMELEON

This tutorial is dedicated to the API usage of CHAMELEON. The idea is to start from a
simple code and step by step explain how to use CHAMELEON routines. The first step
is a full BLAS/LAPACK code without dependencies to CHAMELEON, a code that most
users should easily understand. Then, the different interfaces CHAMELEON provides are
exposed, from the simplest API (step1) to more complicated ones (until step4). The way
some important parameters are set is discussed in step5. Finally step6 is an example about
distributed computation with MPI.

Source files can be found in the example/lapack_to_morse/ directory. If CMake option
CHAMELEON_ENABLE_EXAMPLE is ON then source files are compiled with the project libraries.
The arithmetic precision is double. To execute a step ‘X’, enter the following command:

./step‘X’ --option1 --option2 ...

Instructions about the arguments to give to executables are accessible thanks to the
option -[-]help or -[-]h. Note there exist default values for options.

For all steps, the program solves a linear system Ax = B The matrix values are randomly
generated but ensure that matrix A is symmetric positive definite so that A can be factorized
in a LLT form using the Cholesky factorization.

Lets comment the different steps of the tutorial

4.3.1.1 Step0

The C interface of BLAS and LAPACK, that is, CBLAS and LAPACKE, are used to solve
the system. The size of the system (matrix) and the number of right hand-sides can be given
as arguments to the executable (be careful not to give huge numbers if you do not have an
infinite amount of RAM!). As for every step, the correctness of the solution is checked by
calculating the norm ||Ax−B||/(||A||||x||+ ||B||). The time spent in factorization+solve is



Chapter 4: Using CHAMELEON 24

recorded and, because we know exactly the number of operations of these algorithms, we
deduce the number of operations that have been processed per second (in GFlops/s). The
important part of the code that solves the problem is:

/* Cholesky factorization:

* A is replaced by its factorization L or L^T depending on uplo */

LAPACKE_dpotrf( LAPACK_COL_MAJOR, ’U’, N, A, N );

/* Solve:

* B is stored in X on entry, X contains the result on exit.

* Forward ...

*/

cblas_dtrsm(

CblasColMajor,

CblasLeft,

CblasUpper,

CblasConjTrans,

CblasNonUnit,

N, NRHS, 1.0, A, N, X, N);

/* ... and back substitution */

cblas_dtrsm(

CblasColMajor,

CblasLeft,

CblasUpper,

CblasNoTrans,

CblasNonUnit,

N, NRHS, 1.0, A, N, X, N);

4.3.1.2 Step1

It introduces the simplest CHAMELEON interface which is equivalent to
CBLAS/LAPACKE. The code is very similar to step0 but instead of calling
CBLAS/LAPACKE functions, we call CHAMELEON equivalent functions. The solving
code becomes:

/* Factorization: */

MORSE_dpotrf( UPLO, N, A, N );

/* Solve: */

MORSE_dpotrs(UPLO, N, NRHS, A, N, X, N);

The API is almost the same so that it is easy to use for beginners. It is important to
keep in mind that before any call to MORSE routines, MORSE_Init has to be invoked to
initialize MORSE and the runtime system. Example:

MORSE_Init( NCPU, NGPU );

After all MORSE calls have been done, a call to MORSE_Finalize is required to free
some data and finalize the runtime and/or MPI.

MORSE_Finalize();

We use MORSE routines with the LAPACK interface which means the routines accepts
the same matrix format as LAPACK (1-D array column-major). Note that we copy the



Chapter 4: Using CHAMELEON 25

matrix to get it in our own tile structures, see details about this format here Section 1.2.2.2
[Tile Data Layout], page 4. This means you can get an overhead coming from copies.

4.3.1.3 Step2

This program is a copy of step1 but instead of using the LAPACK interface which leads
to copy LAPACK matrices inside MORSE routines we use the tile interface. We will still
use standard format of matrix but we will see how to give this matrix to create a MORSE
descriptor, a structure wrapping data on which we want to apply sequential task-based
algorithms. The solving code becomes:

/* Factorization: */

MORSE_dpotrf_Tile( UPLO, descA );

/* Solve: */

MORSE_dpotrs_Tile( UPLO, descA, descX );

To use the tile interface, a specific structure MORSE_desc_t must be created. This can
be achieved from different ways.

1. Use the existing function MORSE_Desc_Create: means the matrix data are considered
contiguous in memory as it is considered in PLASMA (Section 1.2.2.2 [Tile Data Lay-
out], page 4).

2. Use the existing function MORSE_Desc_Create_User: it is more flexible than Desc_

Create because you can give your own way to access to tile data so that your tiles can
be allocated wherever you want in memory, see next paragraph Section 4.3.1.4 [Step3],
page 26.

3. Create you own function to fill the descriptor. If you understand well the meaning of
each item of MORSE_desc_t, you should be able to fill correctly the structure (good
luck).

In Step2, we use the first way to create the descriptor:

MORSE_Desc_Create(&descA, NULL, MorseRealDouble,

NB, NB, NB*NB, N, N,

0, 0, N, N,

1, 1);

• descA is the descriptor to create.

• The second argument is a pointer to existing data. The existing data must follow
LAPACK/PLASMAmatrix layout Section 1.2.2.2 [Tile Data Layout], page 4 (1-D array
column-major) if MORSE_Desc_Create is used to create the descriptor. The MORSE_

Desc_Create_User function can be used if you have data organized differently. This is
discussed in the next paragraph Section 4.3.1.4 [Step3], page 26. Giving a NULL pointer
means you let the function allocate memory space. This requires to copy your data in
the memory allocated by the Desc_Create. This can be done with

MORSE_Lapack_to_Tile(A, N, descA);

• Third argument of Desc_Create is the datatype (used for memory allocation).

• Fourth argument until sixth argument stand for respectively, the number of rows (NB),
columns (NB) in each tile, the total number of values in a tile (NB*NB), the number of
rows (N), colmumns (N) in the entire matrix.



Chapter 4: Using CHAMELEON 26

• Seventh argument until ninth argument stand for respectively, the beginning row (0),
column (0) indexes of the submatrix and the number of rows (N), columns (N) in the
submatrix. These arguments are specific and used in precise cases. If you do not
consider submatrices, just use 0, 0, NROWS, NCOLS.

• Two last arguments are the parameter of the 2-D block-cyclic distribution grid, see
ScaLAPACK. To be able to use other data distribution over the nodes, MORSE_Desc_
Create_User function should be used.

4.3.1.4 Step3

This program makes use of the same interface than Step2 (tile interface) but does not
allocate LAPACK matrices anymore so that no copy between LAPACK matrix layout and
tile matrix layout are necessary to call MORSE routines. To generate random right hand-
sides you can use:

/* Allocate memory and initialize descriptor B */

MORSE_Desc_Create(&descB, NULL, MorseRealDouble,

NB, NB, NB*NB, N, NRHS,

0, 0, N, NRHS, 1, 1);

/* generate RHS with random values */

MORSE_dplrnt_Tile( descB, 5673 );

The other important point is that is it possible to create a descriptor, the necessary
structure to call MORSE efficiently, by giving your own pointer to tiles if your matrix is
not organized as a 1-D array column-major. This can be achieved with the MORSE_Desc_

Create_User routine. Here is an example:

MORSE_Desc_Create_User(&descA, matA, MorseRealDouble,

NB, NB, NB*NB, N, N,

0, 0, N, N, 1, 1,

user_getaddr_arrayofpointers,

user_getblkldd_arrayofpointers,

user_getrankof_zero);

Firsts arguments are the same than MORSE_Desc_Create routine. Following arguments
allows you to give pointer to functions that manage the access to tiles from the structure
given as second argument. Here for example, matA is an array containing addresses to tiles,
see the function allocate_tile_matrix defined in step3.h. The three functions you have
to define for Desc_Create_User are:

• a function that returns address of tile A(m,n), m and n standing for the indexes of
the tile in the global matrix. Lets consider a matrix 4x4 with tile size 2x2, the matrix
contains four tiles of indexes: A(m = 0, n = 0), A(m = 0, n = 1), A(m = 1, n = 0),
A(m = 1, n = 1)

• a function that returns the leading dimension of tile A(m, ∗)
• a function that returns MPI rank of tile A(m,n)

Examples for these functions are vizible in step3.h. Note that the way we define these
functions is related to the tile matrix format and to the data distribution considered. This
example should not be used with MPI since all tiles are affected to processus 0, which means
a large amount of data will be potentially transfered between nodes.

http://www.netlib.org/scalapack/slug/node75.html


Chapter 4: Using CHAMELEON 27

4.3.1.5 Step4

This program is a copy of step2 but instead of using the tile interface, it uses the tile
async interface. The goal is to exhibit the runtime synchronization barriers. Keep in mind
that when the tile interface is called, like MORSE_dpotrf_Tile, a synchronization function,
waiting for the actual execution and termination of all tasks, is called to ensure the proper
completion of the algorithm (i.e. data are up-to-date). The code shows how to exploit the
async interface to pipeline subsequent algorithms so that less synchronisations are done.
The code becomes:

/* Morse structure containing parameters and a structure to interact with

* the Runtime system */

MORSE_context_t *morse;

/* MORSE sequence uniquely identifies a set of asynchronous function calls

* sharing common exception handling */

MORSE_sequence_t *sequence = NULL;

/* MORSE request uniquely identifies each asynchronous function call */

MORSE_request_t request = MORSE_REQUEST_INITIALIZER;

int status;

...

morse_sequence_create(morse, &sequence);

/* Factorization: */

MORSE_dpotrf_Tile_Async( UPLO, descA, sequence, &request );

/* Solve: */

MORSE_dpotrs_Tile_Async( UPLO, descA, descX, sequence, &request);

/* Synchronization barrier (the runtime ensures that all submitted tasks

* have been terminated */

RUNTIME_barrier(morse);

/* Ensure that all data processed on the gpus we are depending on are back

* in main memory */

RUNTIME_desc_getoncpu(descA);

RUNTIME_desc_getoncpu(descX);

status = sequence->status;

Here the sequence of dpotrf and dpotrs algorithms is processed without synchronization
so that some tasks of dpotrf and dpotrs can be concurently executed which could increase
performances. The async interface is very similar to the tile one. It is only necessary to give
two new objects MORSE_sequence_t and MORSE_request_t used to handle asynchronous
function calls.



Chapter 4: Using CHAMELEON 28

POTRI (POTRF, TRTRI, LAUUM) algorithm with and without synchronization bar-
riers, courtesey of the PLASMA team.

4.3.1.6 Step5

Step5 shows how to set some important parameters. This program is a copy of Step4 but
some additional parameters are given by the user. The parameters that can be set are:

• number of Threads

• number of GPUs

The number of workers can be given as argument to the executable with --threads=

and --gpus= options. It is important to notice that we assign one thread per gpu to
optimize data transfer between main memory and devices memory. The number of
workers of each type CPU and CUDA must be given at MORSE_Init.

if ( iparam[IPARAM_THRDNBR] == -1 ) {

get_thread_count( &(iparam[IPARAM_THRDNBR]) );

/* reserve one thread par cuda device to optimize memory transfers */

iparam[IPARAM_THRDNBR] -= iparam[IPARAM_NCUDAS];

}

NCPU = iparam[IPARAM_THRDNBR];

NGPU = iparam[IPARAM_NCUDAS];

/* initialize MORSE with main parameters */

MORSE_Init( NCPU, NGPU );

• matrix size

• number of right-hand sides

• block (tile) size

The problem size is given with --n= and --nrhs= options. The tile size is given with
option --nb=. These parameters are required to create descriptors. The size tile NB

is a key parameter to get performances since it defines the granularity of tasks. If NB

http://icl.cs.utk.edu/plasma/


Chapter 4: Using CHAMELEON 29

is too large compared to N, there are few tasks to schedule. If the number of workers
is large this leads to limit parallelism. On the contrary, if NB is too small (i.e. many
small tasks), workers could not be correctly fed and the runtime systems operations
could represent a substantial overhead. A trade-off has to be found depending on many
parameters: problem size, algorithm (drive data dependencies), architecture (number
of workers, workers speed, workers uniformity, memory bus speed). By default it is set
to 128. Do not hesitate to play with this parameter and compare performances on your
machine.

• inner-blocking size

The inner-blocking size is given with option --ib=. This parameter is used by kernels
(optimized algorithms applied on tiles) to perform subsequent operations with data
block-size that fits the cache of workers. Parameters NB and IB can be given with
MORSE_Set function:

MORSE_Set(MORSE_TILE_SIZE, iparam[IPARAM_NB] );

MORSE_Set(MORSE_INNER_BLOCK_SIZE, iparam[IPARAM_IB] );

4.3.1.7 Step6

This program is a copy of Step5 with some additional parameters to be set for the data
distribution. To use this program properly MORSE must use StarPU Runtime system and
MPI option must be activated at configure. The data distribution used here is 2-D block-
cyclic, see for example ScaLAPACK for explanation. The user can enter the parameters
of the distribution grid at execution with --p= option. Example using OpenMPI on four
nodes with one process per node:

mpirun -np 4 ./step6 --n=10000 --nb=320 --ib=64 \

--threads=8 --gpus=2 --p=2

In this program we use the tile data layout from PLASMA so that the call

MORSE_Desc_Create_User(&descA, NULL, MorseRealDouble,

NB, NB, NB*NB, N, N,

0, 0, N, N,

GRID_P, GRID_Q,

morse_getaddr_ccrb,

morse_getblkldd_ccrb,

morse_getrankof_2d);

is equivalent to the following call

MORSE_Desc_Create(&descA, NULL, MorseRealDouble,

NB, NB, NB*NB, N, N,

0, 0, N, N,

GRID_P, GRID_Q);

functions morse_getaddr_ccrb, morse_getblkldd_ccrb, morse_getrankof_2d being
used in Desc_Create. It is interesting to notice that the code is almost the same as Step5.
The only additional information to give is the way tiles are distributed through the third
function given to MORSE_Desc_Create_User. Here, because we have made experiments
only with a 2-D block-cyclic distribution, we have parameters P and Q in the interface
of Desc_Create but they have sense only for 2-D block-cyclic distribution and then using

http://www.netlib.org/scalapack/slug/node75.html


Chapter 4: Using CHAMELEON 30

morse_getrankof_2d function. Of course it could be used with other distributions, being
no more the parameters of a 2-D block-cyclic grid but of another distribution.

4.3.2 List of available routines

4.3.2.1 Auxiliary routines

Reports MORSE version number.

int MORSE_Version (int *ver_major, int *ver_minor, int *ver_micro);

Initialize MORSE: initialize some parameters, initialize the runtime and/or MPI.

int MORSE_Init (int nworkers, int ncudas);

Finalyze MORSE: free some data and finalize the runtime and/or MPI.

int MORSE_Finalize (void);

Return the MPI rank of the calling process.

int MORSE_My_Mpi_Rank (void);

Suspend MORSE runtime to poll for new tasks, to avoid useless CPU consumption when
no tasks have to be executed by MORSE runtime system.

int MORSE_Pause (void);

Symmetrical call to MORSE Pause, used to resume the workers polling for new tasks.

int MORSE_Resume (void);

Conversion from LAPACK layout to tile layout.

int MORSE_Lapack_to_Tile (void *Af77, int LDA, MORSE_desc_t *A);

Conversion from tile layout to LAPACK layout.

int MORSE_Tile_to_Lapack (MORSE_desc_t *A, void *Af77, int LDA);

4.3.2.2 Descriptor routines

Create matrix descriptor, internal function.

int MORSE_Desc_Create (MORSE_desc_t **desc, void *mat, MORSE_enum dtyp,

int mb, int nb, int bsiz, int lm, int ln,

int i, int j, int m, int n, int p, int q);

Create matrix descriptor, user function.

int MORSE_Desc_Create_User(MORSE_desc_t **desc, void *mat, MORSE_enum dtyp,

int mb, int nb, int bsiz, int lm, int ln,

int i, int j, int m, int n, int p, int q,

void* (*get_blkaddr)( const MORSE_desc_t*, int, int),

int (*get_blkldd)( const MORSE_desc_t*, int ),

int (*get_rankof)( const MORSE_desc_t*, int, int ));

Destroys matrix descriptor.

int MORSE_Desc_Destroy (MORSE_desc_t **desc);

Ensure that all data are up-to-date in main memory (even if some tasks have been
processed on GPUs)

int MORSE_Desc_Getoncpu(MORSE_desc_t *desc);



Chapter 4: Using CHAMELEON 31

4.3.2.3 Options routines

Enable MORSE feature.

int MORSE_Enable (MORSE_enum option);

Feature to be enabled:

• MORSE_WARNINGS: printing of warning messages,

• MORSE_ERRORS: printing of error messages,

• MORSE_AUTOTUNING: autotuning for tile size and inner block size,

• MORSE_PROFILING_MODE: activate kernels profiling.

Disable MORSE feature.

int MORSE_Disable (MORSE_enum option);

Symmetric to MORSE_Enable.

Set MORSE parameter.

int MORSE_Set (MORSE_enum param, int value);

Parameters to be set:

• MORSE_TILE_SIZE: size matrix tile,

• MORSE_INNER_BLOCK_SIZE: size of tile inner block,

• MORSE_HOUSEHOLDER_MODE: type of householder trees (FLAT or TREE),

• MORSE_HOUSEHOLDER_SIZE: size of the groups in householder trees,

• MORSE_TRANSLATION_MODE: related to the MORSE_Lapack_to_Tile, see ztile.c.

Get value of MORSE parameter.

int MORSE_Get (MORSE_enum param, int *value);

4.3.2.4 Sequences routines

Create a sequence.

int MORSE_Sequence_Create (MORSE_sequence_t **sequence);

Destroy a sequence.

int MORSE_Sequence_Destroy (MORSE_sequence_t *sequence);

Wait for the completion of a sequence.

int MORSE_Sequence_Wait (MORSE_sequence_t *sequence);

4.3.2.5 Linear Algebra routines

Routines computing linear algebra of the form MORSE_name[_Tile[_Async]] (name fol-
lows LAPACK naming scheme, see http://www.netlib.org/lapack/lug/node24.html

availables:

/** ********************************************************

* Declarations of computational functions (LAPACK layout)

**/

int MORSE_zgelqf(int M, int N, MORSE_Complex64_t *A, int LDA,

MORSE_desc_t *descT);

http://www.netlib.org/lapack/lug/node24.html


Chapter 4: Using CHAMELEON 32

int MORSE_zgelqs(int M, int N, int NRHS, MORSE_Complex64_t *A, int LDA,

MORSE_desc_t *descT, MORSE_Complex64_t *B, int LDB);

int MORSE_zgels(MORSE_enum trans, int M, int N, int NRHS,

MORSE_Complex64_t *A, int LDA, MORSE_desc_t *descT,

MORSE_Complex64_t *B, int LDB);

int MORSE_zgemm(MORSE_enum transA, MORSE_enum transB, int M, int N, int K,

MORSE_Complex64_t alpha, MORSE_Complex64_t *A, int LDA,

MORSE_Complex64_t *B, int LDB, MORSE_Complex64_t beta,

MORSE_Complex64_t *C, int LDC);

int MORSE_zgeqrf(int M, int N, MORSE_Complex64_t *A, int LDA,

MORSE_desc_t *descT);

int MORSE_zgeqrs(int M, int N, int NRHS, MORSE_Complex64_t *A, int LDA,

MORSE_desc_t *descT, MORSE_Complex64_t *B, int LDB);

int MORSE_zgesv_incpiv(int N, int NRHS, MORSE_Complex64_t *A, int LDA,

MORSE_desc_t *descL, int *IPIV,

MORSE_Complex64_t *B, int LDB);

int MORSE_zgesv_nopiv(int N, int NRHS, MORSE_Complex64_t *A, int LDA,

MORSE_Complex64_t *B, int LDB);

int MORSE_zgetrf_incpiv(int M, int N, MORSE_Complex64_t *A, int LDA,

MORSE_desc_t *descL, int *IPIV);

int MORSE_zgetrf_nopiv(int M, int N, MORSE_Complex64_t *A, int LDA);

int MORSE_zgetrs_incpiv(MORSE_enum trans, int N, int NRHS,

MORSE_Complex64_t *A, int LDA,

MORSE_desc_t *descL, int *IPIV,

MORSE_Complex64_t *B, int LDB);

int MORSE_zgetrs_nopiv(MORSE_enum trans, int N, int NRHS,

MORSE_Complex64_t *A, int LDA,

MORSE_Complex64_t *B, int LDB);

#ifdef COMPLEX

int MORSE_zhemm(MORSE_enum side, MORSE_enum uplo, int M, int N,

MORSE_Complex64_t alpha, MORSE_Complex64_t *A, int LDA,

MORSE_Complex64_t *B, int LDB, MORSE_Complex64_t beta,

MORSE_Complex64_t *C, int LDC);

int MORSE_zherk(MORSE_enum uplo, MORSE_enum trans, int N, int K,



Chapter 4: Using CHAMELEON 33

double alpha, MORSE_Complex64_t *A, int LDA,

double beta, MORSE_Complex64_t *C, int LDC);

int MORSE_zher2k(MORSE_enum uplo, MORSE_enum trans, int N, int K,

MORSE_Complex64_t alpha, MORSE_Complex64_t *A, int LDA,

MORSE_Complex64_t *B, int LDB, double beta,

MORSE_Complex64_t *C, int LDC);

#endif

int MORSE_zlacpy(MORSE_enum uplo, int M, int N,

MORSE_Complex64_t *A, int LDA,

MORSE_Complex64_t *B, int LDB);

double MORSE_zlange(MORSE_enum norm, int M, int N,

MORSE_Complex64_t *A, int LDA);

#ifdef COMPLEX

double MORSE_zlanhe(MORSE_enum norm, MORSE_enum uplo, int N,

MORSE_Complex64_t *A, int LDA);

#endif

double MORSE_zlansy(MORSE_enum norm, MORSE_enum uplo, int N,

MORSE_Complex64_t *A, int LDA);

double MORSE_zlantr(MORSE_enum norm, MORSE_enum uplo, MORSE_enum diag,

int M, int N, MORSE_Complex64_t *A, int LDA);

int MORSE_zlaset(MORSE_enum uplo, int M, int N, MORSE_Complex64_t alpha,

MORSE_Complex64_t beta, MORSE_Complex64_t *A, int LDA);

int MORSE_zlauum(MORSE_enum uplo, int N, MORSE_Complex64_t *A, int LDA);

#ifdef COMPLEX

int MORSE_zplghe( double bump, int N, MORSE_Complex64_t *A, int LDA,

unsigned long long int seed );

#endif

int MORSE_zplgsy( MORSE_Complex64_t bump, int N,

MORSE_Complex64_t *A, int LDA,

unsigned long long int seed );

int MORSE_zplrnt( int M, int N, MORSE_Complex64_t *A, int LDA,

unsigned long long int seed );

int MORSE_zposv(MORSE_enum uplo, int N, int NRHS,

MORSE_Complex64_t *A, int LDA,

MORSE_Complex64_t *B, int LDB);



Chapter 4: Using CHAMELEON 34

int MORSE_zpotrf(MORSE_enum uplo, int N, MORSE_Complex64_t *A, int LDA);

int MORSE_zsytrf(MORSE_enum uplo, int N, MORSE_Complex64_t *A, int LDA);

int MORSE_zpotri(MORSE_enum uplo, int N, MORSE_Complex64_t *A, int LDA);

int MORSE_zpotrs(MORSE_enum uplo, int N, int NRHS,

MORSE_Complex64_t *A, int LDA,

MORSE_Complex64_t *B, int LDB);

#if defined (PRECISION_c) || defined(PRECISION_z)

int MORSE_zsytrs(MORSE_enum uplo, int N, int NRHS,

MORSE_Complex64_t *A, int LDA,

MORSE_Complex64_t *B, int LDB);

#endif

int MORSE_zsymm(MORSE_enum side, MORSE_enum uplo, int M, int N,

MORSE_Complex64_t alpha, MORSE_Complex64_t *A, int LDA,

MORSE_Complex64_t *B, int LDB, MORSE_Complex64_t beta,

MORSE_Complex64_t *C, int LDC);

int MORSE_zsyrk(MORSE_enum uplo, MORSE_enum trans, int N, int K,

MORSE_Complex64_t alpha, MORSE_Complex64_t *A, int LDA,

MORSE_Complex64_t beta, MORSE_Complex64_t *C, int LDC);

int MORSE_zsyr2k(MORSE_enum uplo, MORSE_enum trans, int N, int K,

MORSE_Complex64_t alpha, MORSE_Complex64_t *A, int LDA,

MORSE_Complex64_t *B, int LDB, MORSE_Complex64_t beta,

MORSE_Complex64_t *C, int LDC);

int MORSE_ztrmm(MORSE_enum side, MORSE_enum uplo,

MORSE_enum transA, MORSE_enum diag,

int N, int NRHS,

MORSE_Complex64_t alpha, MORSE_Complex64_t *A, int LDA,

MORSE_Complex64_t *B, int LDB);

int MORSE_ztrsm(MORSE_enum side, MORSE_enum uplo,

MORSE_enum transA, MORSE_enum diag,

int N, int NRHS,

MORSE_Complex64_t alpha, MORSE_Complex64_t *A, int LDA,

MORSE_Complex64_t *B, int LDB);

int MORSE_ztrsmpl(int N, int NRHS, MORSE_Complex64_t *A, int LDA,

MORSE_desc_t *descL, int *IPIV,

MORSE_Complex64_t *B, int LDB);



Chapter 4: Using CHAMELEON 35

int MORSE_ztrsmrv(MORSE_enum side, MORSE_enum uplo,

MORSE_enum transA, MORSE_enum diag,

int N, int NRHS,

MORSE_Complex64_t alpha, MORSE_Complex64_t *A, int LDA,

MORSE_Complex64_t *B, int LDB);

int MORSE_ztrtri(MORSE_enum uplo, MORSE_enum diag, int N,

MORSE_Complex64_t *A, int LDA);

int MORSE_zunglq(int M, int N, int K, MORSE_Complex64_t *A, int LDA,

MORSE_desc_t *descT, MORSE_Complex64_t *B, int LDB);

int MORSE_zungqr(int M, int N, int K, MORSE_Complex64_t *A, int LDA,

MORSE_desc_t *descT, MORSE_Complex64_t *B, int LDB);

int MORSE_zunmlq(MORSE_enum side, MORSE_enum trans, int M, int N, int K,

MORSE_Complex64_t *A, int LDA,

MORSE_desc_t *descT,

MORSE_Complex64_t *B, int LDB);

int MORSE_zunmqr(MORSE_enum side, MORSE_enum trans, int M, int N, int K,

MORSE_Complex64_t *A, int LDA, MORSE_desc_t *descT,

MORSE_Complex64_t *B, int LDB);

/** ******************************************************

* Declarations of computational functions (tile layout)

**/

int MORSE_zgelqf_Tile(MORSE_desc_t *A, MORSE_desc_t *T);

int MORSE_zgelqs_Tile(MORSE_desc_t *A, MORSE_desc_t *T, MORSE_desc_t *B);

int MORSE_zgels_Tile(MORSE_enum trans, MORSE_desc_t *A, MORSE_desc_t *T,

MORSE_desc_t *B);

int MORSE_zgemm_Tile(MORSE_enum transA, MORSE_enum transB,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_desc_t *B, MORSE_Complex64_t beta,

MORSE_desc_t *C);

int MORSE_zgeqrf_Tile(MORSE_desc_t *A, MORSE_desc_t *T);

int MORSE_zgeqrs_Tile(MORSE_desc_t *A, MORSE_desc_t *T, MORSE_desc_t *B);

int MORSE_zgesv_incpiv_Tile(MORSE_desc_t *A, MORSE_desc_t *L, int *IPIV,

MORSE_desc_t *B);



Chapter 4: Using CHAMELEON 36

int MORSE_zgesv_nopiv_Tile(MORSE_desc_t *A, MORSE_desc_t *B);

int MORSE_zgetrf_incpiv_Tile(MORSE_desc_t *A, MORSE_desc_t *L, int *IPIV);

int MORSE_zgetrf_nopiv_Tile(MORSE_desc_t *A);

int MORSE_zgetrs_incpiv_Tile(MORSE_desc_t *A, MORSE_desc_t *L, int *IPIV,

MORSE_desc_t *B);

int MORSE_zgetrs_nopiv_Tile(MORSE_desc_t *A, MORSE_desc_t *B);

#ifdef COMPLEX

int MORSE_zhemm_Tile(MORSE_enum side, MORSE_enum uplo,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_desc_t *B, MORSE_Complex64_t beta,

MORSE_desc_t *C);

int MORSE_zherk_Tile(MORSE_enum uplo, MORSE_enum trans,

double alpha, MORSE_desc_t *A,

double beta, MORSE_desc_t *C);

int MORSE_zher2k_Tile(MORSE_enum uplo, MORSE_enum trans,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_desc_t *B, double beta, MORSE_desc_t *C);

#endif

int MORSE_zlacpy_Tile(MORSE_enum uplo, MORSE_desc_t *A, MORSE_desc_t *B);

double MORSE_zlange_Tile(MORSE_enum norm, MORSE_desc_t *A);

#ifdef COMPLEX

double MORSE_zlanhe_Tile(MORSE_enum norm, MORSE_enum uplo, MORSE_desc_t *A);

#endif

double MORSE_zlansy_Tile(MORSE_enum norm, MORSE_enum uplo, MORSE_desc_t *A);

double MORSE_zlantr_Tile(MORSE_enum norm, MORSE_enum uplo,

MORSE_enum diag, MORSE_desc_t *A);

int MORSE_zlaset_Tile(MORSE_enum uplo, MORSE_Complex64_t alpha,

MORSE_Complex64_t beta, MORSE_desc_t *A);

int MORSE_zlauum_Tile(MORSE_enum uplo, MORSE_desc_t *A);

#ifdef COMPLEX

int MORSE_zplghe_Tile(double bump, MORSE_desc_t *A,

unsigned long long int seed);



Chapter 4: Using CHAMELEON 37

#endif

int MORSE_zplgsy_Tile(MORSE_Complex64_t bump, MORSE_desc_t *A,

unsigned long long int seed );

int MORSE_zplrnt_Tile(MORSE_desc_t *A, unsigned long long int seed );

int MORSE_zposv_Tile(MORSE_enum uplo, MORSE_desc_t *A, MORSE_desc_t *B);

int MORSE_zpotrf_Tile(MORSE_enum uplo, MORSE_desc_t *A);

int MORSE_zsytrf_Tile(MORSE_enum uplo, MORSE_desc_t *A);

int MORSE_zpotri_Tile(MORSE_enum uplo, MORSE_desc_t *A);

int MORSE_zpotrs_Tile(MORSE_enum uplo, MORSE_desc_t *A, MORSE_desc_t *B);

#if defined (PRECISION_c) || defined(PRECISION_z)

int MORSE_zsytrs_Tile(MORSE_enum uplo, MORSE_desc_t *A, MORSE_desc_t *B);

#endif

int MORSE_zsymm_Tile(MORSE_enum side, MORSE_enum uplo,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_desc_t *B, MORSE_Complex64_t beta,

MORSE_desc_t *C);

int MORSE_zsyrk_Tile(MORSE_enum uplo, MORSE_enum trans,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_Complex64_t beta, MORSE_desc_t *C);

int MORSE_zsyr2k_Tile(MORSE_enum uplo, MORSE_enum trans,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_desc_t *B, MORSE_Complex64_t beta,

MORSE_desc_t *C);

int MORSE_ztrmm_Tile(MORSE_enum side, MORSE_enum uplo,

MORSE_enum transA, MORSE_enum diag,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_desc_t *B);

int MORSE_ztrsm_Tile(MORSE_enum side, MORSE_enum uplo,

MORSE_enum transA, MORSE_enum diag,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_desc_t *B);

int MORSE_ztrsmpl_Tile(MORSE_desc_t *A, MORSE_desc_t *L,

int *IPIV, MORSE_desc_t *B);



Chapter 4: Using CHAMELEON 38

int MORSE_ztrsmrv_Tile(MORSE_enum side, MORSE_enum uplo,

MORSE_enum transA, MORSE_enum diag,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_desc_t *B);

int MORSE_ztrtri_Tile(MORSE_enum uplo, MORSE_enum diag, MORSE_desc_t *A);

int MORSE_zunglq_Tile(MORSE_desc_t *A, MORSE_desc_t *T, MORSE_desc_t *B);

int MORSE_zungqr_Tile(MORSE_desc_t *A, MORSE_desc_t *T, MORSE_desc_t *B);

int MORSE_zunmlq_Tile(MORSE_enum side, MORSE_enum trans, MORSE_desc_t *A,

MORSE_desc_t *T, MORSE_desc_t *B);

int MORSE_zunmqr_Tile(MORSE_enum side, MORSE_enum trans, MORSE_desc_t *A,

MORSE_desc_t *T, MORSE_desc_t *B);

/** ****************************************

* Declarations of computational functions

* (tile layout, asynchronous execution)

**/

int MORSE_zgelqf_Tile_Async(MORSE_desc_t *A, MORSE_desc_t *T,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zgelqs_Tile_Async(MORSE_desc_t *A, MORSE_desc_t *T,

MORSE_desc_t *B,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zgels_Tile_Async(MORSE_enum trans, MORSE_desc_t *A,

MORSE_desc_t *T, MORSE_desc_t *B,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zgemm_Tile_Async(MORSE_enum transA, MORSE_enum transB,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_desc_t *B, MORSE_Complex64_t beta,

MORSE_desc_t *C, MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zgeqrf_Tile_Async(MORSE_desc_t *A, MORSE_desc_t *T,

MORSE_sequence_t *sequence,

MORSE_request_t *request)



Chapter 4: Using CHAMELEON 39

int MORSE_zgeqrs_Tile_Async(MORSE_desc_t *A, MORSE_desc_t *T,

MORSE_desc_t *B,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zgesv_incpiv_Tile_Async(MORSE_desc_t *A, MORSE_desc_t *L,

int *IPIV, MORSE_desc_t *B,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zgesv_nopiv_Tile_Async(MORSE_desc_t *A, MORSE_desc_t *B,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zgetrf_incpiv_Tile_Async(MORSE_desc_t *A, MORSE_desc_t *L,

int *IPIV, MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zgetrf_nopiv_Tile_Async(MORSE_desc_t *A,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zgetrs_incpiv_Tile_Async(MORSE_desc_t *A, MORSE_desc_t *L,

int *IPIV, MORSE_desc_t *B,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zgetrs_nopiv_Tile_Async(MORSE_desc_t *A, MORSE_desc_t *B,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

#ifdef COMPLEX

int MORSE_zhemm_Tile_Async(MORSE_enum side, MORSE_enum uplo,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_desc_t *B, MORSE_Complex64_t beta,

MORSE_desc_t *C, MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zherk_Tile_Async(MORSE_enum uplo, MORSE_enum trans,

double alpha, MORSE_desc_t *A,

double beta, MORSE_desc_t *C,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zher2k_Tile_Async(MORSE_enum uplo, MORSE_enum trans,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_desc_t *B, double beta, MORSE_desc_t *C,



Chapter 4: Using CHAMELEON 40

MORSE_sequence_t *sequence,

MORSE_request_t *request);

#endif

int MORSE_zlacpy_Tile_Async(MORSE_enum uplo, MORSE_desc_t *A,

MORSE_desc_t *B, MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zlange_Tile_Async(MORSE_enum norm, MORSE_desc_t *A, double *value,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

#ifdef COMPLEX

int MORSE_zlanhe_Tile_Async(MORSE_enum norm, MORSE_enum uplo,

MORSE_desc_t *A, double *value,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

#endif

int MORSE_zlansy_Tile_Async(MORSE_enum norm, MORSE_enum uplo,

MORSE_desc_t *A, double *value,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zlantr_Tile_Async(MORSE_enum norm, MORSE_enum uplo,

MORSE_enum diag, MORSE_desc_t *A, double *value,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zlaset_Tile_Async(MORSE_enum uplo, MORSE_Complex64_t alpha,

MORSE_Complex64_t beta, MORSE_desc_t *A,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zlauum_Tile_Async(MORSE_enum uplo, MORSE_desc_t *A,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

#ifdef COMPLEX

int MORSE_zplghe_Tile_Async(double bump, MORSE_desc_t *A,

unsigned long long int seed,

MORSE_sequence_t *sequence,

MORSE_request_t *request );

#endif

int MORSE_zplgsy_Tile_Async(MORSE_Complex64_t bump, MORSE_desc_t *A,

unsigned long long int seed,



Chapter 4: Using CHAMELEON 41

MORSE_sequence_t *sequence,

MORSE_request_t *request );

int MORSE_zplrnt_Tile_Async(MORSE_desc_t *A, unsigned long long int seed,

MORSE_sequence_t *sequence,

MORSE_request_t *request );

int MORSE_zposv_Tile_Async(MORSE_enum uplo, MORSE_desc_t *A,

MORSE_desc_t *B,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zpotrf_Tile_Async(MORSE_enum uplo, MORSE_desc_t *A,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zsytrf_Tile_Async(MORSE_enum uplo, MORSE_desc_t *A,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zpotri_Tile_Async(MORSE_enum uplo, MORSE_desc_t *A,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zpotrs_Tile_Async(MORSE_enum uplo, MORSE_desc_t *A,

MORSE_desc_t *B, MORSE_sequence_t *sequence,

MORSE_request_t *request);

#if defined (PRECISION_c) || defined(PRECISION_z)

int MORSE_zsytrs_Tile_Async(MORSE_enum uplo, MORSE_desc_t *A,

MORSE_desc_t *B,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

#endif

int MORSE_zsymm_Tile_Async(MORSE_enum side, MORSE_enum uplo,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_desc_t *B, MORSE_Complex64_t beta,

MORSE_desc_t *C, MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zsyrk_Tile_Async(MORSE_enum uplo, MORSE_enum trans,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_Complex64_t beta, MORSE_desc_t *C,

MORSE_sequence_t *sequence,

MORSE_request_t *request);



Chapter 4: Using CHAMELEON 42

int MORSE_zsyr2k_Tile_Async(MORSE_enum uplo, MORSE_enum trans,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_desc_t *B, MORSE_Complex64_t beta,

MORSE_desc_t *C, MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_ztrmm_Tile_Async(MORSE_enum side, MORSE_enum uplo,

MORSE_enum transA, MORSE_enum diag,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_desc_t *B, MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_ztrsm_Tile_Async(MORSE_enum side, MORSE_enum uplo,

MORSE_enum transA, MORSE_enum diag,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_desc_t *B, MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_ztrsmpl_Tile_Async(MORSE_desc_t *A, MORSE_desc_t *L, int *IPIV,

MORSE_desc_t *B, MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_ztrsmrv_Tile_Async(MORSE_enum side, MORSE_enum uplo,

MORSE_enum transA, MORSE_enum diag,

MORSE_Complex64_t alpha, MORSE_desc_t *A,

MORSE_desc_t *B, MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_ztrtri_Tile_Async(MORSE_enum uplo, MORSE_enum diag,

MORSE_desc_t *A,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zunglq_Tile_Async(MORSE_desc_t *A, MORSE_desc_t *T,

MORSE_desc_t *B,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zungqr_Tile_Async(MORSE_desc_t *A, MORSE_desc_t *T,

MORSE_desc_t *B,

MORSE_sequence_t *sequence,

MORSE_request_t *request);

int MORSE_zunmlq_Tile_Async(MORSE_enum side, MORSE_enum trans,

MORSE_desc_t *A, MORSE_desc_t *T,

MORSE_desc_t *B, MORSE_sequence_t *sequence,

MORSE_request_t *request);



Chapter 4: Using CHAMELEON 43

int MORSE_zunmqr_Tile_Async(MORSE_enum side, MORSE_enum trans,

MORSE_desc_t *A, MORSE_desc_t *T,

MORSE_desc_t *B, MORSE_sequence_t *sequence,

MORSE_request_t *request);




	Introduction to CHAMELEON
	MORSE project
	MORSE Objectives
	Research fields
	Fine interaction between linear algebra and runtime systems
	Runtime systems
	Linear algebra

	Research papers

	CHAMELEON
	CHAMELEON software
	PLASMA's design principles
	Tile Algorithms
	Tile Data Layout
	Dynamic Task Scheduling



	Installing CHAMELEON
	Downloading CHAMELEON
	Getting Sources
	Required dependencies
	a BLAS implementation
	CBLAS
	a LAPACK implementation
	LAPACKE
	libtmg
	QUARK
	StarPU
	hwloc
	pthread

	Optional dependencies
	OpenMPI
	Nvidia CUDA Toolkit
	MAGMA
	FxT


	Build process of CHAMELEON
	Setting up a build directory
	Configuring the project with best efforts
	Building
	Tests
	Installing


	Configuring CHAMELEON
	Compilation configuration
	General CMake options
	CHAMELEON options

	Dependencies detection
	Use FxT profiling through StarPU
	Use simulation mode with StarPU-SimGrid

	Using CHAMELEON
	Using CHAMELEON executables
	Linking an external application with CHAMELEON libraries
	Static linking in C
	Dynamic linking in C
	Build a Fortran program with CHAMELEON

	CHAMELEON API
	Tutorial LAPACK to CHAMELEON
	Step0
	Step1
	Step2
	Step3
	Step4
	Step5
	Step6

	List of available routines
	Auxiliary routines
	Descriptor routines
	Options routines
	Sequences routines
	Linear Algebra routines




